Proactive Threat Detection for Connected Cars Using Recursive Bayesian Estimation

نویسندگان

  • Haider al-Khateeb
  • Gregory Epiphaniou
  • Adam Reviczky
  • Petros Karadimas
چکیده

Upcoming disruptive technologies around autonomous driving of connected cars have not yet been matched with appropriate security by design principles and lack approaches to incorporate proactive preventative measures in the wake of increased cyber-threats against such systems. In this paper, we introduce proactive anomaly detection to a use-case of hijacked connected cars to improve cyber-resilience. Firstly, we manifest the opportunity of behavioural profiling for connected cars from recent literature covering related underpinning technologies. Then, we design and utilise a new dataset file for connected cars influenced by the Automatic Dependent Surveillance – Broadcast (ADS–B) surveillance technology used in the aerospace industry to facilitate data collection and sharing. Finally, we simulate the analysis of travel routes in real-time to predict anomalies using predictive modelling. Simulations show the applicability of a Bayesian estimation technique, namely Kalman Filter. With the analysis of future state predictions based on the previous behaviour, cyber-threats can be addressed with a vastly increased time-window for a reaction when encountering anomalies. We discuss that detecting real-time deviations for malicious intent with predictive profiling and behavioural algorithms can be superior in effectiveness than the retrospective comparison of known-good/known-bad behaviour. When quicker action can be taken while connected cars encounter cyber-attacks, more effective engagement or interception of command and control will be achieved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Estimation of Shift Point in Shape Parameter of Inverse Gaussian Distribution Under Different Loss Functions

In this paper, a Bayesian approach is proposed for shift point detection in an inverse Gaussian distribution. In this study, the mean parameter of inverse Gaussian distribution is assumed to be constant and shift points in shape parameter is considered. First the posterior distribution of shape parameter is obtained. Then the Bayes estimators are derived under a class of priors and using variou...

متن کامل

Speech Enhancement Using Gaussian Mixture Models, Explicit Bayesian Estimation and Wiener Filtering

Gaussian Mixture Models (GMMs) of power spectral densities of speech and noise are used with explicit Bayesian estimations in Wiener filtering of noisy speech. No assumption is made on the nature or stationarity of the noise. No voice activity detection (VAD) or any other means is employed to estimate the input SNR. The GMM mean vectors are used to form sets of over-determined system of equatio...

متن کامل

Recursive Bayesian Estimation Navigation and Tracking Applications

Recursive estimation deals with the problem of extracting information about parameters, or states, of a dynamical system in real time, given noisy measurements of the system output. Recursive estimation plays a central role in many applications of signal processing, system identification and automatic control. In this thesis we study nonlinear and non-Gaussian recursive estimation problems in d...

متن کامل

Bayesian Motion Estimation for Temporally Recursive Noise Reduction in X-ray Fluoroscopy

s This paper develops a Bayesian motion estimation algorithm for motioncompensated temporally recursive filtering of moving low-dose X-ray images (X-ray fluoroscopy). These images often exhibit a very low signalto-noise ratio. The described motion estimation algorithm is made robust against noise by spatial and temporal regularization. A priori expectations about the spatial and temporal smooth...

متن کامل

Bayesian Sample Size Computing for Estimation of Binomial Proportions using p-tolerance with the Lowest Posterior Loss

This paper is devoted to computing the sample size of binomial distribution with Bayesian approach. The quadratic loss function is considered and three criterions are applied to obtain p-tolerance regions with the lowest posterior loss. These criterions are: average length, average coverage and worst outcome.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017